A backward pass through a CNN using a generative model of its activations

نویسندگان

  • Hua-Yan Wang
  • Anna Chen
  • Yi Liu
  • Dileep George
  • D. Scott Phoenix
چکیده

Neural networks have shown to be a practical way of building a very complex mapping between a pre-specified input space and output space. For example, a convolutional neural network (CNN) mapping an image into one of a thousand object labels is approaching human performance in this particular task. However the mapping (neural network) does not automatically lend itself to other forms of queries, for example, to detect/reconstruct object instances, to enforce top-down signal on ambiguous inputs, or to recover object instances from occlusion. One way to address these queries is a backward pass through the network that fuses top-down and bottom-up information. In this paper, we show a way of building such a backward pass by defining a generative model of the neural network’s activations. Approximate inference of the model would naturally take the form of a backward pass through the CNN layers, and it addresses the aforementioned queries in a unified framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Project Scheduling Method Based on Fuzzy Theory

In this paper a new method based on fuzzy theory is developed to solve the project scheduling problem under fuzzy environment. Assuming that the duration of activities are trapezoidal fuzzy numbers (TFN), in this method we compute several project characteristics such as earliest times, latest times, and, slack times in term of TFN. In this method, we introduce a new approach which we call modif...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

The Impact of Exchange Rate Pass-Through via Domestic Prices on Inflation in Iran: New Evidence from a Threshold Regression

There are various causes for inflation in macroeconomics. One of the important channels of experiencing inflation is through the international economy caused by external shocks. In this context, the impact of exchange rate volatilities on domestic prices known as Exchange Rate Pass-Through (ERPT) plays a vital role. The present paper deals with the impact of Exchange Rate Pass-Through on inflat...

متن کامل

Learning FRAME Models Using CNN Filters

The convolutional neural network (ConvNet or CNN) has proven to be very successful in many tasks such as those in computer vision. Recently there has been growing interest in visualizing the knowledge discriminatively learned by CNNs, by generating images based on CNN features. This paper is a contribution towards this theme of research on knowledge visualization via image generation. Specifica...

متن کامل

Introspective Classifier Learning: Empower Generatively

We propose introspective convolutional networks (ICN) that emphasize the importance of having convolutional neural networks empowered with generative capabilities. We employ a reclassification-by-synthesis algorithm to perform training using a formulation stemmed from the Bayes theory. Our ICN tries to iteratively: (1) synthesize pseudo-negative samples; and (2) enhance itself by improving the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.02767  شماره 

صفحات  -

تاریخ انتشار 2016